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Abstract—Learning effective vocal representations from a
waveform mixture is a crucial but challenging task for deep neural
network (DNN)-based singing voice separation (SVS). Successful
representation learning (RL) depends heavily on well-designed
neural architectures and effective general priors. However, DNNs
for RL in SVS are mostly built on generic architectures without
general priors being systematically considered. To address these
issues, we introduce deep unfolding to RL and propose two
RL-based models for SVS, deep unfolded representation learning
(DURL) and optimal transport DURL (OT-DURL). In both models,
we formulate RL as a sequence of optimization problems for
signal reconstruction, where three general priors, synthesis, non-
negative, and our novel analysis, are incorporated. In DURL and
OT-DURL, we take different approaches in penalizing the analysis
prior. DURL uses the Euclidean distance as its penalty, while OT-
DURL uses a more sophisticated penalty known as the OT distance.
We address the optimization problems in DURL and OT-DURL
with the first-order operator splitting algorithm and unfold the
obtained iterative algorithms to novel encoders, by mapping the
synthesis/analysis/non-negative priors to different interpretable
sublayers of the encoders. We evaluated these DURL and OT-
DURL encoders in the unsupervised informed SVS and supervised
Open-Unmix frameworks. Experimental results indicate that (1)
the OT-DURL encoder is better than the DURL encoder and
(2) both encoders can considerably improve the vocal-signal-
separation performance compared with those of the baseline
model.

Index Terms—Deep unfolding, representation learning, analysis
prior, singing voice separation

I. INTRODUCTION

The field of singing voice separation (SVS) has garnered con-
siderable attention and research interest [1]–[8]. Traditionally,
the SVS task has been addressed using model-based meth-
ods [2], [9]–[12], which rely heavily on the prior knowledge
(assumptions) about the characteristics of the singing voice.
In contrast to model-based methods, modern ‘deep’ methods,
e.g., using deep neural networks (DNNs), operate in a data-
driven manner. These methods use deep networks of neurons to
learn feature representations, which have demonstrated superior
effectiveness for SVS compared with traditional methods [3],
[5], [8], [13]–[15].

Weitao Yuan and Shengbei Wang are with the Tianjin Key Laboratory
of Autonomous Intelligence Technology and Systems, School of Software,
Tiangong University, Tianjin, China, e-mail: weitaoyuan@hotmail.com and
wangshengbei@tiangong.edu.cn.

Jianming Wang is with the Centre for Engineering Faculty, Tiangong
University, Tianjin, China, e-mail: wangjianming@tiangong.edu.cn.

Masashi Unoki is with the School of Information Science, Japan Advanced
Institute of Science and Technology, Nomi, Japan, e-mail: unoki@jaist.ac.jp.

Wenwu Wang is with the Centre for Vision, Speech and Signal Processing,
University of Surrey, Guildford, UK, e-mail: w.wang@surrey.ac.uk.

x Encoder Separator Decoder x̂0
Latent

representation

Estimated

representation

Fig. 1: Typical DNN-based SVS framework, where x is input
mixture signal and x̂0 is estimated vocal signal.

An ordinary DNN-based SVS framework typically comprises
an encoder, separator, and decoder. As shown in Fig. 1,
the encoder transforms a time-domain mixture signal (or a
noisy vocal signal) into a latent representation. The separator
takes this latent representation as input and produces an
estimated representation of the target vocal signal. Finally,
the decoder converts the estimated representation back into
the time-domain vocal signal. The separator relies heavily
on the encoder and latent representation, as its goal is to
estimate the representation of the target vocal signal using these
components. To the best of our knowledge, while there has been
significant research dedicated to designing the separator [2],
comparatively less focus has been given to the encoder and
latent representation [16].

In SVS systems, encoders can be broadly classified into
two types. The first type relies on traditional time-frequency
analysis tools such as short-time Fourier transform (STFT),
wavelet transform, and similar techniques. The second type
uses deep-learning-based approaches, specifically DNN-based
representation learning (RL) methods [16], [17]. The latent
representations produced using traditional time-frequency tools,
which are called pre-computed representations, have only lim-
ited expression ability as they are mainly computed with linear
transformation [13], [14], [18], [19]. Even more problematic,
these analysis tools are neither trainable nor data-driven. This
limitation prevents them from adapting to the characteristics
of the training data. In contrast, the representations generated
by DNN-based RL, known as learned representations, are
derived from real data using a nonlinear and data-driven
approach. Therefore, these learned representations have the
capability to dynamically capture the essential features of vocal
signals. Moreover, DNN-based RL has the advantage of directly
learning latent representations from the time-domain mixture.
This enables the utilization of crucial phase information [20]
for separation, which is frequently overlooked with traditional
analysis tools [13], [14], [18], [19]. Due to these advantages,
DNN-based RL is considered more effective than traditional
tools for SVS. However, there has been no solid experimental
evidence to support this point [13], [16], [21], [22]. In our
view, there are two key issues that are closely linked to the
performance of DNN-based RL and need to be addressed to
enhance its effectiveness.
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Interpretability. The interpretability of sublayers within
DNNs is important in SVS, as it aids in comprehending
the structure of the encoder and identifying any inherent
model limitations. Traditional time-frequency analysis tools
such as STFT are highly interpretable as their bases/frames
have well-defined mathematical expressions and clear physical
interpretations [23]. In contrast, DNN-based RL is usually
difficult to interpret as it is mostly constructed on generic
DNN architectures [24]. According to Monga et al. [24],
generic DNNs such as convolutional/recurrent neural networks
(CNNs/RNNs) only include basic convolution/recurrent opera-
tions, and it is therefore difficult to discover what is learned
inside the networks by examining network parameters. In
current SVS systems, the encoder and decoder are usually
trained together with the separator, making it challenging to
independently investigate the mechanisms behind the learning
and functionality of the latent representation for SVS [16],
[25]. To enhance interpretability, it is necessary to re-design
or customize current DNNs for RL specifically in SVS. This
would involve making the functionalities and structures of the
encoder more interpretable.

General priors. According to Bengio et al. [26], general
priors are essential for RL and should be used when solving
artificial intelligence (AI) tasks. Such general priors in common
AI tasks include smoothness, multiple explanatory factors, and
sparsity [26]. However, it is still unclear what are useful general
priors for RL in SVS. In our view, the general priors in SVS
should have a strong connection to signal reconstruction, as the
ultimate goal of SVS is to reconstruct the target vocal signal
from the mixture. When designing the encoder, it is crucial to
take into account these reconstruction priors. By doing so, we
can obtain latent representations that are effective in achieving
the desired signal reconstruction. To the best of our knowledge,
there is currently no research that has thoroughly investigated
the systematic integration of general priors of SVS into the
encoder architecture.

To address the aforementioned challenges, we propose using
deep unfolding [24] [27] in the context of RL for SVS. We
introduce two models based on deep unfolding: deep unfolded
representation learning (DURL) and optimal transport DURL
(OT-DURL). These models aim to enhance RL methods for
SVS. In both models, we formulate the task of RL as a sequence
of optimization problems for signal reconstruction. To address
this, we introduce three general priors for SVS: synthesis,
non-negative, and our novel analysis priors. These priors are
designed and integrated into the optimization problems as
constraints or penalties, effectively modeling various aspects
of the RL process. In DURL, the analysis prior is enforced
with the Euclidean distance as a penalty. In contrast, OT-DURL
uses the OT distance, which has proven to be a more effective
measure for the analysis prior, to evaluate the distance between
distributions in the latent representation space. Both DURL
and OT-DURL address the constrained optimization problems
using the first-order operator splitting algorithm. The resulting
iterative algorithms are then unfolded to create novel encoders
for each model. We tested the DURL and OT-DURL encoders
in the unsupervised informed SVS (ISVS) framework [16],
[17] and supervised Open-Unmix (UMX) framework [13].

The ISVS framework uses the ground-truth vocal signal and
accompaniment signal, instead of relying on a specific separator,
to compute the binary mask for SVS. Thus, this approach
mitigates the impact of a specific separator and enables a
more accurate evaluation of the encoder and RL performance.
Experimental results indicate that the DURL and OT-DURL
encoders considerably enhance the performance of vocal signal
separation compared with those of other models [16], [28]–[31].
The contributions of this work are summarized as follows:

• We introduce deep unfolding into RL and two interpretable
deep-unfolding-based encoders specifically tailored for
SVS.

• We designed a novel analysis prior for RL and further
extended it to an OT-based version, which enables bet-
ter measurement of distances between different latent
representations compared with the traditional Euclidean
distance.

• Different from current approaches which use OT as a
loss function, we use OT as a form of the analysis prior.
Specifically, we unfold OT into a sublayer of the encoder,
allowing the different components of the OT sublayer
to be optimized through back-propagation. This sublayer
can be considered a ‘differentiable OT-prior’ within our
encoders.

II. RELATED WORK

Enhancing the interpretability of neural structures has
emerged as an intriguing issue in SVS. As a pioneering work
in this field, Mimilakis et al. [16] proposed an unsupervised
ISVS framework. In this framework, the separator is eliminated,
allowing the encoder and decoder to be trained independently
of any specific separator. To further improve interpretability,
they designed a re-parameterized decoder based on a previous
study [32]. This decoder has the capability to learn amplitude
information from data, leading to an interpretable representation
similar to STFT. However, the encoder in their framework [16]
was not interpretable as it was simply composed of two-layer
generic convolutional networks. The authors [16] focused solely
on using the rectified linear unit (ReLU) as a non-negative
prior for the encoder to promote the non-negativity and sparsity
of the representation in accordance with [33], [34]. In contrast,
we provide a systematic approach to designing an interpretable
encoder for SVS. We also explicitly incorporate a wider range
of general priors of RL into the encoder.

Deep unfolding, also known as the unrolling algorithm, has
primarily been applied to image and video processing [24],
[35]. We, however, introduce deep unfolding into audio/music
source separation and constructed DURL and OT-DURL
specifically for SVS. The use of deep unfolding enables us to
systematically unfold the constrained optimization problems of
SVS, incorporating general priors, into interpretable encoders.
We also introduce a novel prior called analysis prior for
our models and present the first work using both analysis
and synthesis priors for SVS. Virtanen also explored the
incorporation of priors related to temporal continuity and
sparsity for non-negative-matrix factorization algorithms [36].
Our approach differs from Virtanen’s in that we introduce an
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Fig. 2: Unsupervised baseline framework [16].

optimization problem that encompasses three general priors
specific to SVS. We also unfold the obtained iterative algorithm
to create a DNN-based encoder.

In DURL, we use the Euclidean distance to penalize the
disparity between two latent representations for the analysis
prior. However, the Euclidean distance is not an optimal
measure for distribution distance. To improve DURL, we
extend the analysis prior to an OT version, i.e., the OT-
based analysis prior, within OT-DURL. The OT is a geometric
measure that defines the Wasserstein distance between different
distributions [37]. It is typically used as a loss function to
compare various probability distributions in deep/machine-
learning contexts [17], [38]–[41]. In contrast to previous
research, we use OT as a general prior and integrate it as
a mapping within a sublayer of the encoder. This introduces
a novel trainable OT layer that effectively measures different
latent representations. To the best of our knowledge, there has
been no study on deep unfolding that has unfolded the OT
penalty to a substructure of the neural network for SVS.

III. BASELINE FRAMEWORK

Fig. 2 shows the baseline SVS framework [16] that we
used. Compared with the typical DNN-based SVS framework
(Fig. 1), this framework does not rely on the use of a separator,
enabling the encoder and decoder to be trained independently
without any interference from a separator.

The input of the baseline framework is a noisy vocal signal
x ∈ RN . The encoder maps x to its latent time-frequency
representation a ∈ RCM , which consists of C channels with
M frames for each channel, where C denotes the number of
frequency bins and M the number of time frames. The decoder
reverses this mapping and outputs an estimated vocal signal
x̂0 ∈ RN .

With these notations, we formulate the baseline framework
as

a = Encoder(x), Encoder : RN → RCM
≥0 , (1)

x̂0 = Decoder(a), Decoder : RCM
≥0 → RN . (2)

A closer examination of this framework reveals that the
encoder is composed of a linear transform W2 ∈ RCM×N

and a nonlinear activation ReLU, i.e.,

Encoder(x) def
= ReLU(W2x), (3)

where W2 is a matrix representing two one-dimensional (1D)
strided convolutions1. More details about W2 can be found in
a previous study [16].

The decoder in Fig. 2 models a vocal signal as a sum of C
modulated sinusoidal components:

Decoder(a) def
= Wa, (4)

1The convolution operation can be represented by circular matrix multipli-
cation. The theory behind this can be found in Lemma 1 of [42].

where W ∈ RN×CM represents the 1D transposed convo-
lutions by C kernels. Each kernel, denoted as wc ∈ RL

(c = 1, ..., C), is re-parameterized by amplitude modulated
sinusoidal functions [16]:

wc,l = cos(2πf2
c l + ρc)mc,l, l = [0, . . . , L− 1], (5)

where l is the time index and c is the channel index. The
trainable parameters in Eq. (5) are the sampling-rate-normalized
carrier frequency fc ∈ R, phase ρc ∈ R, and modulating signal
mc = [mc,l]l ∈ RL.

In the following sections, we present the DURL and OT-
DURL encoders. These encoders include the baseline encoder
as a special case.

IV. DEEP UNFOLDED REPRESENTATION LEARNING
(DURL)

A. DURL

1) Synthesis prior: The input signal of DURL is the noisy
input x, assuming x = x0 + n, where x0 is the clean vocal
signal and n is the noise (or accompanying music).

The encoder in SVS should output a representation a from
x. A general prior (assumption) is that the estimated vocal
signal x̂0 computed with a, where x̂0 =Wa, should not be
too far from x , i.e., x̂0 ≈ x. We then have

x ≈ Wa, (6)

which we call the synthesis prior. We use the standard l2 norm
(Euclidean distance) to measure the reconstruction error, i.e.,

1

2
∥x−Wa∥22. (7)

By minimizing the l2 error (7) with respect to a, the basic RL
process is formulated as the following optimization problem,

argmin
a∈RCM

1

2
∥x−Wa∥22. (8)

There are usually many solutions to the optimization prob-
lem (8). We use the regularizer ∥a∥22 to select a low-energy
latent representation a,

argmin
a∈RCM

1

2
∥x−Wa∥22 +

β

2
∥a∥22, (9)

where β controls the balance between the regularizer 1
2∥a∥

2
2

and the l2 error (7).
2) Non-negative prior: A general but particularly useful

prior (assumption) for audio signal modeling [43] is non-
negativity. The non-negative prior for the latent representation
a is

a ∈ RCM
≥0 . (10)

This prior promotes both non-negative and sparsity of the latent
representation [16] [44].

The optimization problem (9) is extended when including
the non-negative prior as

argmin
a∈RCM

≥0

1

2
∥x−Wa∥22 +

β

2
∥a∥22. (11)
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3) Analysis prior: In a similar fashion to the synthesis prior,
we introduce an analysis prior (assumption) that governs the
mapping from x to a, as follows

a ≈ W2x. (12)

The analysis prior is designed to complement and work in
conjunction with the synthesis prior. By incorporating both
priors, we achieve the following expression,

x̂0 = Wa ≈ WW2x, (13)

which can be considered as a denoising process.
We use the l2 norm to penalize the analysis prior in (12),

i.e.,
1

2
∥a−W2x∥22. (14)

Using this penalty, we can augment the optimization prob-
lem (11) and obtain a new optimization problem,

argmin
a∈RCM

≥0

1

2
∥x−Wa∥22 +

β

2
∥a∥22 +

ρ

2
∥a−W2x∥22, (15)

where ρ controls the penalty of the analysis prior. The proposed
optimization problem (15) represents the full DURL with all
three general priors included.

B. Solving DURL
To solve the full DURL represented by the optimization

problem (15), we use the forward-backward operator splitting
algorithm [45]. We first define two functions f(a) and g(a) to
respectively represent the objective function and constraint of
the full DURL as follows:

f(a) =
1

2
∥x−Wa∥22 +

β

2
∥a∥22 +

ρ

2
∥a−W2x∥22, (16)

g(a) =

{
0 a ∈ RCM

≥0 ,

+∞ a /∈ RCM
≥0 .

(17)

The optimization problem (15) can then be written as

argmin
a∈RCM

f(a) + g(a). (18)

With the forward-backward operator splitting method, the
optimization problem (18) can be solved using the following
iterative algorithm,

a(k+1)=(1−λ)a(k)+λProxγg
(
a(k)−γ∇f(a(k))

)
, (19)

where 0 < λ ≤ 1, 0 < γ ≤ 1, 0 ≤ k ≤ T (k denotes the
iteration index), and

Proxγg(x) = argmin
u

γg(u) +
1

2
∥u− x∥22. (20)

To compute Eq. (19), we calculate the gradient of Eq. (16):

∇f(a) = (W⊺(Wa− x) + βa) + ρ(a−W2x). (21)

Combining Eqs. (19) and (21), we obtain

a(k+1) = (1− λ)a(k) + λProxγg

(
a(k) +

γ
((

W⊺(x−Wa(k))− βa(k)
)

+ρ(W2x− a(k))
))

. (22)

The proximal operator of g in Eq. (17) is the ReLU, i.e.,

Proxγg = ReLU. (23)

Equation (22) can then be rewritten as

a(k+1) = (1− λ)a(k) + λReLU
(
a(k) +

γ
((

W⊺(x−Wa(k))− βa(k)
)

+ρ(W2x− a(k))
))

, (24)

which is the iterative algorithm derived from the optimization
problem (15).

The hyperparameters in Eq. (24) are λ, γ, β, ρ, and T . We
can obtain different variations of this iterative algorithm by
setting these hyperparameters differently. For example, when
we set ρ = 0 and β = 1, the full DURL represented by the
optimization problem Eq. (15) becomes

argmin
a∈RCM

≥0

1

2
∥x−Wa∥22 +

1

2
∥a∥22, (25)

and the corresponding iterative algorithm (Eq. (24)) becomes

a(k+1) = (1− λ)a(k) + λReLU
(
(1− γ)a(k)

+γW⊺(x−Wa(k))
)
. (26)

In particular, if we set λ = γ = 1 and the initial state a(0) = 0,
Eq. (26) becomes

a(1) = ReLU(W⊺x). (27)

It is clear that the baseline encoder (Eq. (3)) can be obtained as
one iteration of Eq. (26) when we set W⊺ = W2. Therefore,
to include the baseline encoder as a special case, we set W⊺ =
W2 for Eq. (24), and the DURL iterative algorithm becomes

a(1) = ReLU(W2x), (28)

a(k+1) = (1− λ)a(k) + λReLU
(
a(k)+

γ
((

W2(x−Wa(k))− βa(k)
)

+ρ(W2x− a(k))
))

, (29)

where a(k+1) is the output of the k-th iteration (1 ≤ k ≤ T )
and the final output is a(T+1). We call this iterative algorithm
the full DURL iterative algorithm.

C. Interpretable encoder unfolded from full DURL

1) Functional components: The DURL iterative algorithm
(Eq. (29)) can be unfolded to an encoder. The main functional
components in Eq. (29) are labeled in Eq. (30) (shown at the
top of this page), where three general priors are mapped to
corresponding sublayers: synthesis, activation, and analysis,
respectively. There are also two skip connections (SCs) labeled
in Eq. (30): outside and inside. The outside SC between a(k)

and the ReLU sublayer is controlled by λ. The inside SC
is between a(k) and the γ-weighted synthesis and analysis
sublayers.
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a(k+1) = (1− λ)a(k) + λ︸ ︷︷ ︸
Outside SC

ReLU︸ ︷︷ ︸
Activation sublayer

(
a(k) + γ︸ ︷︷ ︸
Inside SC

(
W2(

Synthesis residue x̃(k)︷ ︸︸ ︷
x−Wa(k) )− βa(k)︸ ︷︷ ︸

Synthesis sublayer

+ ρ(

Analysis residue ã(k)︷ ︸︸ ︷
W2x− a(k) )︸ ︷︷ ︸

Analysis sublayer

))
(30)

x

W2 ReLU

W2

1-γβ 

γρ 

...

W2

ReLU

a
(1)

 W + + +

+ a
(k) ˜ -

-
x

(k) ˜ 

Initialization

a
(k+1)

 a
(k)

 

k-th basic block (k+1)-th basic block

1-λ

...

Analysis sublayerNon-negative sublayerSynthesis sublayer

... a
(T+1)

 ...

... ...

λγ

Fig. 3: Encoder unfolded from DURL iterative algorithm.

(i) Synthesis sublayer: The synthesis sublayer originates
from the synthesis prior. It consists of a subtraction step of
W2x̃

(k) − βa(k), where a(k) is the latent representation from
the previous sublayer, and x̃(k) is the synthesis residue between
the x and reconstructed signal Wa(k), i.e.,

x̃(k) = x−Wa(k). (31)

The procedure W2x̃
(k) transforms the synthesis residue x̃(k)

to the latent representation space. It can be considered as the
residue representation caused by x̃(k). The βa(k) is from the
l2 norm regularizer in Eq. (9), where β controls the weight of
the l2 norm regularizer.

(ii) Analysis sublayer: The analysis sublayer originates from
the analysis prior. It consists of a weighted analysis residue
ρã(k), where the analysis residue ã(k) is defined as

ã(k) = W2x− a(k). (32)

The ã(k) iteratively computes the difference between the latent
representation a(k) and latent representation from x, i.e., W2x.
Hyperparameter ρ controls the weight of the analysis sublayer.

(iii) Non-negative activation sublayer: The non-negative
activation sublayer originates from the non-negative prior. It
applies the ReLU to the summation of the inside SC and
synthesis&analysis sublayers.

2) Unfolded encoder: It is easy to directly unfold Eq. (29)
(i.e., Eq. (30)) to an encoder. However, to make the unfolded
encoder more compact, we unfold the following equivalent
equation of Eq. (29):

a(k+1) = (1− λ)a(k) + λReLU
(
(1− γβ)a(k) +

γ
(
W2(x−Wa(k)) + ρ(W2x−a(k))

))
. (33)

The unfolded encoder is shown in Fig. 3. The input of the
encoder is x, the initialization layer ReLU(W2x) is from the
baseline encoder, and the (k + 1)-th layer (consisting of a
synthesis sublayer, non-negative sublayer, analysis sublayer,

and two SCs) is unfolded from the k-th iteration of the DURL
iterative algorithm. The output of the encoder is a(T+1). This
encoder is structure-interpretable as its three sublayers are
derived from the optimization problem characterized by the
three general priors of SVS.

It can be challenging to ensure the cooperative functioning of
these sublayers within a single neural network, given that they
originate from different general priors. However, the proposed
DURL tackles this issue by formulating all general priors
into a unified optimization problem (15). Through the use of
the forward-backward operator splitting algorithm during the
optimization process, all priors and their associated penalties are
coordinated in each iteration step. This coordinated approach
allows the sublayers to work collaboratively and achieve their
intended objectives.

V. OPTIMAL TRANSPORT-DEEP UNFOLDED
REPRESENTATION LEARNING (OT-DURL)

The representations in the latent space can be viewed as
distributions, especially when the non-negative prior is enforced.
In DURL, we use Euclidean distance to penalize the disparity
between two latent representations (a and W2x) for the
analysis prior (i.e. (14)). However, it is widely acknowledged
that the Euclidean distance is not an optimal measure for
comparing distributions [37], [41], [46]. To address this issue,
we propose using the OT distance [37]. The OT distance
defines a geometrically meaningful Wasserstein distance [37],
which quantifies the distance between two distributions as
the minimum cost of transporting all the mass from one
distribution to another. This approach offers favorable properties
for measuring distance in the latent space [41], [46], [47].

The OT distance is defined as follows. Assume two non-
negative latent representations p,q ∈ RCM

+ and a cost matrix
D = [di,j ] ∈ RCM×CM

+ , where D denotes the pairwise
distances between two distributions, di,j is the cost (weight)
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of moving from pi to qj , and “+” means a non-negative value.
The OT distance between p and q is defined as

OT(p,q)= min
X∈U(p,q)

⟨D, X⟩ := Tr(D⊺X), (34)

U(p,q)=
{
X∈RCM×CM

+

∣∣X1CM=p, X⊺1CM=q
}
, (35)

where ⟨D, X⟩ is the inner product of D and X , Tr is the
trace of a matrix, and 1CM is a vector of CM elements with
each element equal to one. We approximate the OT penalty of
Eq. (34) with an entropy regularized OT penalty [41], [47]:

OTσ(p,q) = min
X∈U(p,q)

⟨D, X⟩ − σE(X), (36)

E(X) = −
∑
ij

h(Xij), (37)

where σ ≥ 0 and

h(Xij) =

{
Xij logXij , if Xij > 0

0, otherwise
. (38)

With the notation of Eq. (34), we define the OT-based analysis
prior between a and W2x as

OT(a,W2x). (39)

Then the full DURL represented by the optimization prob-
lem (15) can be extended to the OT-DURL model2 by replacing
the Euclidean distance based analysis prior (14) with the OT-
based analysis prior (39), i.e.,

argmin
a∈RCM

≥0

1

2
∥x−Wa∥22 +

β

2
∥a∥22 + ρOT(a,W2x). (40)

We use the entropy regularized OT penalty defined in
Eq. (36) to approximate the OT-DURL model represented
by the optimization problem (40),

argmin
a∈RCM

≥0

1

2
∥x−Wa∥22 +

β

2
∥a∥22 + ρOTσ(a,W2x), (41)

which is called entropy regularized OT-DURL. This model
can be easily solved by convex optimization since the entropy
regularized penalty OTσ is differentiable and has a simple form
of a convex conjugate [41], [47].

A. Solving entropy regularized OT-DURL

Following a previous study [41], we solve the optimization
problem (41) by first deriving its dual problem then applying
a primal-dual operator splitting algorithm [45] to that dual
problem.

2Note that we do not apply the OT distance to the synthesis prior in OT-
DURL. This is because the penalty in the synthesis prior is the distance between
the time-domain waveforms (i.e., x − Wa), and the Euclidean distance is
more suitable to measure this distance.

1) Derivation of dual problem:

Proposition 1. Given h1 ∈ RN ,h2 ∈ RCM ,h3 ∈ RCM and

h = [h1;h2;h3] ∈ R(N+2CM), (42)

The dual problem of the primal problem (41) can be written as

− argmin
h

f̃(h) + g∗{(−W⊺,−I,−I)h}, (43)

where I denotes the identity matrix and the function f̃ is defined
as

f̃(h) =
1

2
∥h1∥22 + ⟨x, h1⟩

+ρOT∗
σ(W2x,h2/ρ) +

β

2
∥h3/β∥22, (44)

and g(a) is defined in Eq. (17). The optimal solution a⋆ of the
primal problem (41) satisfies a primal-dual relationship of

a⋆ = ∇OT∗
σ(W2x,h

⋆
2/ρ), (45)

where the vector differential operator ∇ operates on the second
variable of OT∗

σ and h⋆ = [h⋆
1;h

⋆
2;h

⋆
3] is a solution of the

dual problem (43).

2) Solving dual problem: Similar to Theorem 9 [48], we use
the primal-dual operator splitting algorithm [45] to solve the
dual problem (43).We can then obtain the following iterative
algorithm of OT-DURL,

h(k+1) = h(k) − τ(∇f̃(h(k))− [W; I; I]a(k)); (46)
ξ(k+1) = 2h(k+1) − h(k); (47)
a(k+1) = proxγg(a

(k) − γ(W⊺, I, I)ξ(k+1)). (48)

Using Eq. (23), f̃ (Eq. (44)), h (Eq. (42)), and g (Eq. (17)),
the iterative algorithm (Eqs. (46)-(48)) can be written as

h
(k+1)
1 = h

(k)
1 − τ(∇

h
(k)
1

f̃(h(k))−Wa(k)); (49)

h
(k+1)
2 = h

(k)
2 − τ(∇

h
(k)
2

f̃(h(k))− a(k)); (50)

h
(k+1)
3 = h

(k)
3 − τ(∇

h
(k)
3

f̃(h(k))− a(k)); (51)

ξ(k+1) = 2h(k+1) − h(k); (52)
a(k+1) = ReLU(a(k) − γ(W⊺, I, I)ξ(k+1)), (53)

where

∇
h

(k)
1

f̃(h(k)) = ∇
h

(k)
1

{1
2
∥h(k)

1 ∥22 + ⟨x, h(k)
1 ⟩}

= h
(k)
1 + x; (54)

∇
h

(k)
2

f̃(h(k)) = ∇
h

(k)
2

{ρOT∗
σ(W2x,h

(k)
2 /ρ)}

= θ ⊙
(
K⊺W2x

Kθ

)
(55)

(with K := e−D/σ and θ := eh
(k)
2 /ρσ);

∇
h

(k)
3

f̃(h(k)) = ∇
h

(k)
3

{β
2
∥h(k)

3 /β∥22} = h
(k)
3 /β. (56)

Hyperparameter σ (σ > 0) controls the entropy regularizer
and ρ (ρ > 0) controls the penalty weight of the OT-based
analysis prior. The computation of Eq. (55) is based on a
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Fig. 4: Encoder unfolded from OT-DURL iterative algorithm.

previous study [49], where the OT∗
σ is differentiable with the

σ-Lipschitz gradient, i.e.,

∇yOT∗
σ(x,y) = θ ⊙

(
K⊺ x

Kθ

)
, (57)

where K := e−D/σ and θ := ey/σ .
3) Comparison between DURL and OT-DURL: The iterative

algorithms of both DURL and OT-DURL are derived from
three general priors, so we compare their differences. First,
we set τ = 1/2, β = 1, and W⊺ = W2, then the primal-dual
iterative algorithm (Eqs. (49)-(56)) becomes

θ(k) = eh
(k)
2 /ρσ; (58)

∇OT(k) = θ(k) ⊙
(
K⊺ W2x

Kθ(k)

)
; (59)

ã(k) = ∇OT(k) − a(k); (60)
x̃(k) = x−Wa(k); (61)

φ(k+1) = −W2x̃
(k) + h

(k)
2 − ã(k) + a(k); (62)

a(k+1) = ReLU(a(k) − γφ(k+1)); (63)

h
(k+1)
2 = h

(k)
2 − 1/2ã(k), (64)

where ã(k) (Eq. (60)) is the OT-based analysis residue (similar
to Eq. (32) in DURL), x̃(k) (Eq. (61)) is the synthesis residue
(the same as Eq. (31)), and a(k+1) is the main iteration step.

When substituting φ(k+1) (Eq. (62)) for Eq. (63), the main
iteration step in Eq. (63) becomes

a(k+1) = ReLU
(
(1− γ)a(k) + γW2x̃

(k)

+γã(k) − γh
(k)
2

)
. (65)

Considering the definition of ã(k) (Eq. (60)) and x̃(k) (Eq. (61)),
we obtain

a(k+1) = ReLU
(
(1− γ)a(k) + γW2(x−Wa(k))

+γ(∇OT(k) − a(k))− γh
(k)
2

)
. (66)

We can see that the iterative algorithms (Eq. (66) and Eq. (29))
have similar architectures. If we set λ = ρ = β = 1, the DURL
iterative algorithm (Eq. (29)) can be simplified as

a(k+1) = ReLU
(
(1− γ)a(k) + γW2(x−Wa(k))

+γ(W2x− a(k))
)
. (67)

By comparing Eqs. (66) and (67), we can observe that the
iterative algorithm of OT-DURL brings two new iteration steps
of ∇OT(k) and h

(k)
2 to the DURL iterative algorithm. That is,

OT-DURL will have exactly the same architecture as DURL
if we remove h

(k)
2 from the OT-DURL algorithm and replace

∇OT(k) with W2x.
It should be noted that the extra step ∇OT(k) (Eq. (59))

introduced in OT-DURL has more potential than W2x in
DURL, because it uses not only W2x but also extra information
of θ(k) (Eq. (58)) which includes an adaptive step h

(k)
2 that

can adjust its value for each iteration step.

B. Interpretable encoder unfolded from OT-DURL
The OT-DURL encoder can be implemented directly using

the iterative algorithm (Eqs. (58)-(64)). However, considering
that OT-DURL is an extension of DURL, we choose to
implement the OT-DURL encoder on the basis of the DURL
encoder. This approach enables us to validate the effectiveness
of the OT-based analysis prior and ensure a fair comparison
between the DURL and OT-DURL encoders.

To inherit the main structure of the DURL encoder (see
Eq. (33)), we introduce the following changes (underlined
parts) to the main iteration step (i.e. Eq. (65)) of OT-DURL:

a(k+1) = (1− λ)a(k) + λReLU
(
(1− γβ)a(k)

+γW2x̃
(k)+γρã(k)−γh

(k)
2

)
. (68)

By substituting Eq. (63) with (68), we proceed to unfold the
OT-DURL iterative algorithm (Eqs. (58)-(64)) to construct the
OT-DURL encoder. As shown in Fig. 4, the OT-based analysis
residue ã(k) (Eq. (60)) and synthesis residue x̃(k) (Eq. (61))
correspond to the OT analysis sublayer and synthesis sublayer,
respectively, where the OT analysis sublayer has two new
iteration steps for ∇OT(k) and h

(k+1)
2 , respectively, generated

from the OT-based analysis prior.

VI. EVALUATION OF DURL AND OT-DURL ENCODERS

A. Evaluation conditions
We followed the experimental settings in the study by

Mimilakis et al. [16] to evaluate the DURL and OT-DURL
encoders. The database was MUSDB18 [50], which consists
of 150 two-channel multi-track signals sampled at 44.1 kHz
(100 for training and 50 for testing).
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1) Training: We trained the DURL and OT-DURL encoders
in an unsupervised manner with four multi-tracks as those used
by Mimilakis et al. [16]. Each multi-track was down-mixed to
single-channel for vocal signal and accompaniment (acc) signal,
respectively. Both the vocal and acc sources were partitioned
into overlapping clips of N = 44100 samples with an overlap
of 22050 samples [50]. Following Mimilakis et al. [16], we
carried out random shuffling of the clips for each source and
introduced corruption to the clean vocal clips in two different
manners. For a given clean vocal clip xv, we created two noisy
clips xm and xn, by mixing it with an acc source and Gaussian
noise, respectively. The loss function [16] for training was

x̂n = Decoder
(
Encoder(xn)

)
, (69)

Am = Encoder(xm), (70)
L = Lneg-SNR(xv, x̂n) + ωLTV(Am), ω > 0, (71)

where Lneg-SNR is the negative signal-to-noise ratio (neg-
SNR) [51], LTV is the total-variation (TV) denoising loss,
and ω is the weight for the TV regularizer. The batch size for
training was 8 with a learning rate of 1e−4 [16].

2) Testing: We used 50 testing tracks as in the study
by Mimilakis et al. [16] for testing. The DURL and OT-
DURL encoders were tested in the ISVS framework [16] [25],
which evaluates the upper-bound performance of a latent
representation with an informed binary mask [16].

Specifically, for an encoder, the ISVS computes three latent
representations of a testing signal: the mixture xm = xac + xv,
acc signal xac, and vocal signal xv, i.e.,

Am = Encoder(xm), (72)
Aac = Encoder(xac), (73)
Av = Encoder(xv). (74)

The informed binary mask Gv ∈ RCM can be computed on
the basis of the element-wise division of Av and Aac, i.e.,

Gv = Q(Av ⊘ Aac), (75)

where Q(·) is defined as

Q(x) =

{
1, if x ≥ 0.5;

0, otherwise.
(76)

Using Gv, we can compute the estimated vocal signal x̂v by

Ã = Am ⊙Gv, (77)
x̂v = Decoder(Ã), (78)

where x̂v is the estimated vocal signal and “⊙” is the element-
wise (Hadamard) product. This process is called ‘informed’
SVS as we use the ground-truth vocal signal and acc signal to
compute Gv when estimating the vocal signal.

Following Mimilakis et al. [16], we used the scale-invariant
signal-to-distortion ratio (SI-SDR) [52] to evaluate the sepa-

ration performance of the encoders. The SI-SDR between xv
and x̂v, denoted as SI-SDR-BM3, is defined as

SI-SDR-BM(xv, x̂v) = 10 log10
( ||αxv||22
||αxv − x̂v||22

)
, (79)

α =
x̂T

v xv

||xv||22
. (80)

3) Hyperparameters: The hyperparameters in the DURL and
OT-DURL encoders are β, ρ, and σ for general priors, γ and λ
for SCs, ω for the LTV loss function, and other hyperparameters
C, L, and T . Hyperparameters C and ω were inherited from
the baseline encoder, therefore were set the same as those
in the baseline, where C = [400, 800, 1600], L = 2048, and
ω = 0.5. The other hyperparameters were set as follows.

Default settings for DURL encoder: For DURL (Eq. (33)),
we set β = ρ = 1 to equally weight the analysis and synthesis
priors as we have no prior knowledge for them. Hyperparameter
λ was set to 0.1 as we expected that the SC outside the ReLU
sublayer would be highly weighted to ensure an easier gradient
propagation for deeper layers. Inside the ReLU sublayer, we
set γ to 0.9 to emphasize the analysis&synthesis priors, i.e.,
the inside SC takes 10% weight and the analysis&synthesis
priors take 90%. Hyperparameter T was set to 3.

Default settings for the OT-DURL encoder: We inherited
all the hyperparameters in DURL for OT-DURL, except for
β and T . In OT-DURL, we set β = 0, since the second item
β
2 ∥a∥

2
2 in OT-DURL (Eq. (40)) is a Euclidean-distance-based

penalty and should be weighted with a low value or zero so
that the OT-based analysis prior can work for OT-DURL4. In
OT-DURL, we set T = 2 for low resolution of C = 400 and
T = 3 for high resolution of C = 800/1600. We also set
σ = 1 for OT-DURL.

Experimental setting: To fully examine the performance of
the DURL and OT-DUR encoders, we evaluated them with a
wider range of values around their default values. Hyperparam-
eter β for the synthesis prior was set to [0, 0.2, 0.5, 0.8, 1.2]
for both encoders, ρ for the analysis prior was set to
[0, 0.8, 1.2, 1.6, 2.0] for DURL and [0.8, 1.2, 1.6, 2.0] for OT-
DURL since 0 cannot be a divisor in Eq. (58). Hyperparameter
γ for the inside SC was set to [0.6, 0.7, 0.8, 0.9, 1.0] and λ for
the outside SC was set to [0.05, 0.08, 0.12, 0.15, 0.18].

B. Performance of DURL and OT-DURL encoders

1) Effectiveness of l2 regularizer in synthesis prior: We
tested the DURL and OT-DURL encoders as a function of
β with the other hyperparameters set as default. The median
SI-SDR-BMs of the DURL and OT-DURL encoders under
different β are plotted in Fig. 5, where the gray curves are for
the DURL encoder and the blue curves are for the OT-DURL
encoder. We also labeled the highest and lowest SI-SDR-BM
of each curve with the corresponding color.

The SI-SDR-BM of the DURL encoder increased then
decreased for all Cs. The best SI-SDR-BM of DURL was
obtained at β = 0.5 for C = 400 and β = 0.8 for
C = 800, 1600, which were clearly higher than those of β = 0,

3The BM represents Binary Masking (BM) as in [16].
4In the derivation of the OT-DURL algorithm, we keep the l2 norm of

∥a∥22 (β ̸= 0) for the comparison between the DURL and OT-DURL.
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Fig. 5: Performance of DURL and OT-DURL affected by β.

i.e., without using the regularizer 1
2∥a∥

2
2. These results suggest

that 1
2∥a∥

2
2 in the synthesis prior is useful to improve the

separation performance of the DURL encoder, and we can
obtain a satisfactory SI-SDR-BM if 1

2∥a∥
2
2 is weighted by a

suitable β. In particular, the gap between the best SI-SDR-
BM and worst SI-SDR-BM of the DURL encoder (obtained
with β = 0) increased with C: the best SI-SDR-BM for
C = 400, 800, 1600 was 0.15, 0.56, and 0.67 dB higher than
that of β = 0, respectively, which indicates that the performance
of 1

2∥a∥
2
2 can be better exploited under high feature resolution.

Similar to DURL, the SI-SDR-BM of OT-DURL also
increased with an increase in C. However, different from
DURL, OT-DURL achieved its best SI-SDR-BM at around
β = 0 for all different Cs: the highest SI-SDR-BM of OT-
DURL was obtained at β = 0 for C = 400, 800 and β = 0.2
for C = 1600. It is clear that the performance of OT-DURL
decreased with an increase in β. The reason behind this
phenomenon may be that the OT penalty, i.e., OTσ , is a more
effective distance measure than the Euclidean distance, and
if the Euclidean-distance-based regularizer is highly weighted
(by large β), OT-DURL will be dominated by it and the OT
penalty cannot work well for OT-DURL.

By comparing the results of DURL and OT-DURL, we can
find that OT-DURL achieved much better results than DURL for
C = 800, 1600, especially for small β. These results indicate
the effectiveness of the OT-based analysis prior for SVS.

2) Effectiveness of analysis prior: Hyperparameter ρ is
crucial for the analysis prior. We tested the performance of the
DURL and OT-DURL encoders as a function of ρ with the
other hyperparameters set as default values.

Fig. 6 shows that the SI-SDR-BM of DURL increased
significantly with the increase in ρ for C = 800, 1600. The
lowest SI-SDR-BM of DURL for all Cs appeared at ρ = 0,
i.e., without using the analysis prior. These results verified the
effectiveness of the analysis prior for DURL. In contrast to
DURL, the SI-SDR-BM of OT-DURL did not show a clear
change with ρ.

We can also see that the SI-SDR-BMs of both encoders
increased with an increase in C. The best SI-SDR-BMs of
both encoders were obtained at C = 1600. When comparing
OT-DURL with DURL, we can see that OT-DURL achieved
a better SI-SDR-BM than DURL for each C under the same
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Fig. 6: Performance of DURL and OT-DURL affected by ρ.
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Fig. 7: Performance of DURL and OT-DURL affected by γ.

ρ, which verifies the advantage of the OT-based analysis prior
over the Euclidean-distance-based analysis prior.

3) Performance affected by skip connections: We tested the
performance of DURL and OT-DURL encoders as a function
of γ. As in Eqs. (33) and (68), 1− γβ controls the weight of
the inside SC a(k) in the ReLU for both encoders. Since we set
β = 1 by default for DURL, 1− γ is the weight of the inside
SC in the ReLU. For OT-DURL, we set β = 0 by default;
thus, the weight of the inside SC in the ReLU is always 1.
Hyperparameter γ also affects the synthesis&analysis priors in
both encoders.

The performance of DURL and OT-DURL computed with
γ = [0.6, 0.7, 0.8, 0.9, 1.0] is plotted in Fig. 7. Both encoders
had similar performance for C = 400, which did not show
much change with different γ. The results for C = 800, 1600,
in contrast, greatly improved when γ was increased. As stated
above, 1 − γ controls the weight of the inside SC and γ
controls the weight of the synthesis and analysis priors in
DURL. Therefore, the above results indicate that emphasizing
the synthesis and analysis priors and attenuating the inside SC
is helpful to improve the performance of DURL.

The performance of OT-DURL improved by increasing γ,
especially for C = 1600. Since γ in OT-DURL only controlled
the synthesis prior and OT-based analysis prior, the performance
of OT-DURL can be optimized with a reasonably weighted
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Fig. 8: Performance of DURL and OT-DURL affected by λ.

synthesis prior and OT-based analysis prior.
We then evaluated the performance of DURL and OT-DURL

as a function of λ. As shown in Eqs. (33) and (68), 1 − λ
controls the outside SC of a(k) and λ controls the weight of
the ReLU. Fig. 8 shows the results. The highest performance of
both encoders was obtained when λ was set between 0.08 and
0.15. When λ was reduced to lower than 0.08, the performance
of both encoders dropped significantly, as the weight of the
ReLU block was too low. It was also found that λ higher than
0.15 was not favored in both encoders. Therefore, λ should be
well controlled to ensure the performance of both encoders.

VII. COMPARATIVE EVALUATIONS

A. Comparative evaluations in ISVS framework

We first compared the DURL and OT-DURL encoders with
other encoders in the unsupervised ISVS framework. The
compared encoders were the baseline encoder [16], one-, two-
, and three-layer 1D convolution encoders [53] (denoted as
Conv1, Conv2, and Conv3), Sinkhorn-distance-based encoder
(SinkH) [17], SincNet encoder [16], and other variations of
the baseline encoder.

We then implemented the other variations of the baseline
encoder by incorporating effective neural substructures to
the baseline encoder. These included (1) the self-attention
(SA) mechanism [28], (2) optimal transport kernel embedding
(OTKE) [29], (3) highway (HW) network [30], and (4)
convolutional kernel network (CKN) [31]. OTKE uses an
OT sublayer to execute a weighted pooling operation [29]
and CKN is a hybrid of CNNs and kernel method [31]. We
implemented the variations of the baseline encoder by placing
each substructure before and after the ReLU function of the
baseline encoder, respectively. These variations are named in
the form of "Substructure-B(Before)/A(After)", e.g., "SA-B"
is the SA-based baseline encoder with the SA placed before
the ReLU function.

1) Computation complexity: We compared the computation
complexity of different encoders in Table I. The results
are measured by floating point operations (FLOPs [G]) and
parameter amount (Param [M]). We can see that the DURL
encoders had higher FLOPs than most encoders for each C
and the OT-DURL encoders had even higher FLOPs. Similar

TABLE I: Comparison of computation complexity between
DURL and OT-DURL encoders and other encoders in ISVS
framework, where “DURL/OT-DURL-1/2/3” stands for DURL/
OT-DURL encoder of 1/2/3 layers.

Model FLOPs [G] Param [M]
400 800 1600 400 800 1600

Baseline 0.26 1.03 4.13 1.54 4.61 15.33
SincNet 0.26 1.03 4.13 0.77 3.06 12.21
Conv1 0.07 0.15 0.29 1.56 3.13 6.25
Conv2 0.09 0.23 0.64 2.02 4.96 13.57
Conv3 0.12 0.32 0.98 2.48 6.79 20.90
SA-B 0.31 1.00 3.42 1.54 4.61 15.33
SA-A 0.31 1.00 3.42 1.54 4.61 15.33
OTKE-B 0.32 1.00 3.48 1.61 4.75 5.60
OTKE-A 0.32 1.00 3.48 1.61 4.75 5.60
HW1-B 0.32 1.17 4.39 1.63 4.70 15.42
HW1-A 0.32 1.17 4.39 1.63 4.70 15.42
HW3-B 0.46 1.43 4.93 1.80 4.87 15.59
HW3-A 0.46 1.43 4.93 1.80 4.87 15.59
CKN-B 0.88 4.94 32.59 2.61 8.89 32.42
CKN-A 0.88 4.94 32.59 2.61 8.89 32.42
SinkH 0.26 1.03 4.13 1.54 4.61 15.33
DURL-1 0.77 3.09 12.37 2.33 6.18 18.46
DURL-2 1.29 5.16 20.62 2.33 6.18 18.46
DURL-3 1.81 7.22 28.87 2.33 6.18 18.46
OT-DURL-1 0.82 3.18 12.55 2.38 6.24 18.52
OT-DURL-2 1.38 5.33 20.98 2.38 6.24 18.52
OT-DURL-3 1.94 7.49 29.41 2.38 6.24 18.52

to FLOPs, the DURL and OT-DURL encoders also had greater
Param than most other encoders. We found that the Param
of the DURL and OT-DURL encoders did not increase with
the number of sublayers for each C, but the FLOPs did. This
is because the parameters in DURL and OT-DURL encoders
can be shared for multilayers while the computational load
(measured by FLOPs) increases when the number of sublayers
is increased.

2) Separation performance: We compared all encoders
with respect to their SI-SDR-BM performance. We used
default hyperparameters for the DURL and OT-DURL encoders.
According to Mimilakis et al. [16], we also computed the
reconstruction performance of all encoders. The reconstructed
vocal signal x̂0

v was computed by

x̂0
v = decoder(Av). (81)

The reconstruction performance, measured using SI-SDR-RC
(RC represents ReConstruction), is calculated by

SI-SDR-RC(xv, x̂
0
v) = 10 log10

( ||αxv||22
||αxv − x̂0

v ||22

)
, (82)

α =
xT

v x̂
0
v

||xv||22
. (83)

The SI-SDR-BM (BM for short) and SI-SDR-RC (RC for
short) of different encoders are listed in Table II. The SI-SDR-
BM of the traditional STFT-based encoder is also reported
for reference, where a hamming window with 2048 samples
and hop-size of 256 were used to compute STFT. According
to Mimilakis et al. [16], we set C = 1025 for the STFT-
based encoder. We can see that the DURL encoders achieved
significant SI-SDR-BM improvement for each C compared
with other encoders, and the OT-DURL encoders achieved even
better SI-SDR-BMs than the DURL encoders. Furthermore,
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(f) C = 1600

Fig. 9: Histogram of l1-norm distances between vocal representation and acc. representation produced with different encoders.

TABLE II: Comparison of separation performance between
DURL and OT-DURL encoders and other encoders in ISVS
framework (in dB).

Model BM RC
400 800 1600 400 800 1600

Baseline 5.93 6.28 6.68 30.73 32.11 31.54
SincNet 4.68 5.69 5.98 25.40 28.55 27.21
Conv1 2.62 3.54 3.75 10.82 17.02 21.48
Conv2 2.55 3.33 3.57 10.49 16.43 18.10
Conv3 2.23 3.07 1.18 12.84 15.06 15.70
SA-B 4.43 5.12 5.48 29.50 33.11 33.58
SA-A 4.45 5.12 5.49 29.35 33.40 33.48
OTKE-B 4.16 4.84 5.25 28.84 33.02 32.42
OTKE-A 4.17 4.80 5.32 28.85 33.19 33.26
HW1-B 5.25 6.33 5.40 29.41 29.68 29.82
HW1-A 5.26 6.26 5.46 28.27 29.34 31.12
HW3-B 4.86 5.85 3.69 25.45 28.17 31.26
HW3-A 4.85 4.90 4.33 27.36 24.56 29.04
CKN-B 4.99 5.89 7.65 27.83 29.60 25.37
CKN-A 5.02 5.91 7.92 26.20 28.00 24.69
SinkH – 5.63 – – 31.61 –
STFT 8.80 N/A
DURL-1 7.10 7.65 8.02 32.53 33.60 32.33
DURL-2 7.40 8.86 8.90 31.66 32.72 32.29
DURL-3 7.43 9.17 9.99 31.17 32.45 33.02
OT-DURL-1 7.53 9.23 10.05 33.22 34.31 33.74
OT-DURL-2 7.71 9.38 10.39 31.99 32.79 33.03
OT-DURL-3 6.93 9.58 10.90 31.33 33.13 32.22

the DURL and OT-DURL encoders gave slightly better SI-
SDR-RC than the baseline encoder and certain variations of
the baseline encoder.

We can see that the DURL encoders achieved greater SI-
SDR-BM improvement for each C as compared with other
encoders. The OT-DURL encoders achieved even better SI-
SDR-BMs than the DURL encoders. Furthermore, the DURL
and OT-DURL encoders gave better SI-SDR-RCs than most
of the other models.

When comparing Table I with Table II, we can easily find that

the DURL and OT-DURL encoders could achieve much higher
separation performance than other encoders with a smaller
number of parameters. For example, DURL-1/2/3 and OT-
DURL-1/2/3 for C = 400 had much lower FLOPs and Param
than most other encoders of C = 800 and C = 1600, but
provided better separation performance. These results suggest
that the DURl and OT-DURL encoders are competitive with
other encoders.

3) Statistical analysis: We examined whether different
encoders tend to distinguish the latent representations of vocal
signal and acc signal via statistical analysis.

We first computed the l1 norm distance between the vocal
representation and acc representation for different encoders. To
do this, we cut the clean vocal and acc sources of all 50 testing
songs in MUSDB18 into pairs of 1-second clips. The clips in
each pair were denoted as si ∈ RN (i = 1, 2) for vocal signal
and acc signal, respectively. The latent representation of si was
obtained by Zi = Encoder(si) ∈ RCM , where the encoder can
be the STFT-based encoder, baseline encoder, DURL encoder,
and OT-DURL encoder.

We then computed the l1 norm distance (∥Z1 − Z2∥1)
between vocal representation and acc representation for all the
clip pairs. The distance histograms for different encoders are
shown in Fig. 9. The distance between the vocal representation
and acc representation produced with the DURL and OT-
DURL encoders were much larger than those produced with the
baseline encoder and STFT-based encoder, which means that
our encoders are more effective in discriminating the features
of vocal and acc signals.

The above l1 norm computes the distance between vocal
representation and acc representation as two 1D vectors Zi ∈
RCM (i = 1, 2). Since Zi includes 2D intricate time-frequency
information, we also examined the difference between Z1 and
Z2 as 2D matrices.

We rewrote Zi as Z̃i = [y1
i , . . . ,y

j
i , . . . ,y

M
i ] ∈ RC×M
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TABLE III: Discrimination ability of different encoders measured by coding-rate reduction of MCR2 [54] (in ∆R(Z̃)).

Model ∆R(Z̃)
median mean std median mean std median mean std

STFT 64.59 65.08 22.51 64.59 65.08 22.51 64.59 65.08 22.51
C=400 C=800 C=1600

Baseline 129.61 128.47 32.54 201.80 198.47 50.93 276.12 271.12 63.41
DURL-1 129.88 129.73 28.05 206.43 203.53 46.46 282.58 278.23 57.95
DURL-2 135.91 134.62 26.79 218.92 215.11 44.25 293.98 288.54 53.62
DURL-3 142.36 139.95 25.85 241.36 236.08 44.75 312.72 306.23 52.87
OT-DURL-1 148.11 145.85 26.59 269.06 263.12 40.15 358.37 350.59 51.92
OT-DURL-2 179.55 175.17 23.25 328.81 320.27 35.46 414.90 405.06 40.41
OT-DURL-3 168.51 165.09 22.75 297.51 289.26 32.35 360.69 350.81 39.35

(i = 1, 2), where Z̃i consists of M column (frame) with
each column having C features, i.e., yj

i ∈ RC . Since the
vocal and acc signals usually have different time-frequency
features, we assumed that the frames of vocal and acc repre-
sentations Z̃i (i = 1, 2) belong to different low-dimensional
linear subspaces. We used the maximal coding-rate reduction
(MCR2) principle [54]–[56] and computed the coding-rate
reduction ∆R(Z̃) to measure the discrimination of vocal
and acc representations [54]–[56], where Z̃ = Z̃1 ∪ Z̃2. A
higher ∆R means better discrimination between vocal and acc
representations.

Table III lists the median/mean/standard deviation (std)
of ∆Rs for all encoders. The vocal and acc representations
produced with the baseline encoder had higher ∆R than those
of the STFT-based encoder. The DURL encoders had higher
∆R than the baseline encoder and the OT-DURL encoders
obtained even higher ∆R. This suggests that the DURL and
OT-DURL encoders have better discrimination ability than the
baseline encoder and STFT-based encoder. In addition, ∆R
increased with increasing C for both DURL and OT-DURL
encoders. This suggests that high feature resolution is helpful in
discriminating the features of the vocal and acc signals. These
results were consistent with those in previous experiments.

B. Comparative evaluations in supervised UMX framework

We evaluated the DURL and OT-DURL encoders in the
supervised Open-Unmix (UMX) framework [13]. UMX uses
STFT-based encoder as the encoder, Inverse STFT as the
decoder, and bidirectional long short-term memory as the
separator. To evaluate the DURL and OT-DURL encoders
in UMX, we replaced the STFT-based encoder in UMX with
the DURL and OT-DURL encoders with the other components
remaining unchanged.

The SVS performance is affected by the size of the training
dataset; thus, we trained the original UMX and DURL/OT-
DURL-based UMX on MUSDB18 with three cases: (1) limited
dataset with 4% of the songs, (2) limited dataset with 40%
of the songs, and (3) full dataset with all songs. As shown
in Table IV, the DURL/OT-DURL-based UMX, which was
trained with the limited datasets (4 and 40% of songs) provided
considerable improvement compared with the original UMX.
For the full dataset, the DURL/OT-DURL-based UMX had only
slight improvement on the original UMX. A possible reason
behind this phenomenon is that when there is sufficient training
data, the separator can be quite powerful and the performance
of SVS would be dominated by the separator. As a result, all

TABLE IV: Performance of DURL/OT-DURL-based UMX,
where “DURL/OT-DURL-1/2/3” stands for UMX with DURL/
OT-DURL encoder of 1/2/3 layers.

Training with 4% dataset

Model Vocal signal Acc signal
SDR SIR ISR SAR SDR SIR ISR SAR

UMX 1.94 5.46 6.62 3.49 8.18 11.57 15.99 12.15
DURL-1 2.30 6.37 7.53 3.40 8.59 12.38 16.10 11.31
DURL-2 2.53 6.06 8.00 3.81 8.85 12.80 15.30 11.51
DURL-3 2.40 6.23 8.39 3.80 8.71 13.07 15.08 11.13

OT-DURL-1 2.61 6.18 8.31 4.01 8.63 12.88 15.41 11.50
OT-DURL-2 2.46 6.14 6.56 3.60 8.75 11.72 15.94 12.13
OT-DURL-3 2.74 6.63 7.32 4.09 8.96 12.26 16.12 12.09

Training with 40% dataset

Model Vocal signal Acc signal
SDR SIR ISR SAR SDR SIR ISR SAR

UMX 5.10 11.78 12.18 6.36 10.81 17.28 18.54 13.14
DURL-1 5.76 12.92 12.40 6.62 11.73 17.47 20.09 13.54
DURL-2 5.83 13.16 12.64 6.46 11.38 17.87 20.21 13.52
DURL-3 5.59 13.23 11.53 6.30 11.55 17.02 20.41 13.50

OT-DURL-1 5.83 12.37 12.77 6.70 11.50 17.69 19.76 13.26
OT-DURL-2 5.92 13.50 12.40 6.52 11.62 17.74 20.37 13.43
OT-DURL-3 6.03 14.22 12.08 6.54 11.81 17.39 21.06 13.50

Training with full dataset

Model Vocal signal Acc signal
SDR SIR ISR SAR SDR SIR ISR SAR

UMX 6.47 14.96 14.28 6.91 12.62 19.82 20.92 13.98
DURL-1 6.47 15.86 13.74 6.59 12.66 19.29 21.72 13.96
DURL-2 6.41 15.47 13.91 6.68 12.74 19.27 21.66 13.83
DURL-3 6.40 15.29 13.89 6.71 12.71 19.38 21.24 13.76

OT-DURL-1 6.58 16.11 13.59 6.78 12.81 19.69 21.41 13.94
OT-DURL-2 6.47 15.74 13.17 6.91 12.83 19.27 22.31 14.31
OT-DURL-3 6.57 15.30 13.37 6.85 12.82 19.35 21.54 13.91

the models in UMX framework had similar performance, as
they all used the same separator.

By comparing all the results in this section, we can find that
the DURL and OT-DURL encoders achieved better performance
than the baseline and other encoders in the unsupervised
ISVS framework. In the evaluations for the supervised setting,
the DURL and OT-DURL encoders also outperformed the
original UMX, especially for the datasets of limited size. These
observations verified the effectiveness of the DURL and OT-
DURL encoders.

VIII. CONCLUSIONS

We presented deep-unfolding-based representation learning
(RL) models for singing voice separation (SVS), deep unfolded
representation learning (DURL) and optimal transport (OT)-
deep unfolded representation learning (OT-DURL), to learn
effective latent representation of the vocal signal for SVS. In
DURL, we formulated the process of RL as a series of signal-
reconstruction optimization problems and penalized them with
the Euclidean-distance-based synthesis prior, analysis prior, and
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non-negative prior. We also extended DURL to an OT version,
i.e., OT-DURL, by penalizing the analysis prior with a more
suitable OT distance. The iterative algorithms derived from
DURL and OT-DURL were unfolded to novel encoders, where
different general priors were mapped to specific sublayers of
the encoder. Experimental results indicate that the DURL and
OT-DURL encoders can provide much better performance for
SVS in both unsupervised and supervised frameworks than
other encoders.
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